
Final Presentation
Justen Stall

Associate Data Science Engineer, UDRI
Master of Computer Science Student, UD

CPS 595 Software Engineering Project



Background

Problem

Solving the complexity problems of large-scale 
Kubernetes systems.

Approach the complexity problem as a 
greenfield and use it as an opportunity to learn 
Kubernetes system design.

Plan

1. Describe the problem
2. Evaluate existing solutions
3. Prescribe and implement a solution

A beautiful green field.



● Attended Kubecon
● Created proof of concept Timoni bundle for ACE/Env
● Created configuration rendering pipeline comparisons

○ Looked at processes for GitLab deployment: Helm Chart, Operator, Big Bang Helm Chart
● Researched declarative API design and its adoption across Kubernetes tools
● Identified standard components for configuration management
● Projects:

○ Configuration-as-Code: Terraform, Pulumi, cdk8s, KubeVela, kluctl
○ Configuration-as-Data: kpt, Kustomize, KRM Functions
○ DSLs: KCL, CUE, CEL, Jsonnet, Tanka
○ Controller SDKs: Operator SDK, Kubebuilder, metacontroller
○ K8s packaging models: OAM, OCM, RukPak, ArtifactHub, Skaffold
○ K8s-related tools: Crossplane, KubeVela, KubeMod, Monokle, helm-docs
○ API development: OpenAPI, OpenAPI Generator, controller-gen, Kusk, oapi-codegen

Progress

https://www.terraform.io/
https://www.pulumi.com/
https://cdk8s.io/
https://kubevela.io/
https://kluctl.io/
https://kpt.dev/
https://kustomize.io/
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md
https://kcl-lang.io/
https://cuelang.org/
https://github.com/google/cel-spec
https://jsonnet.org/
https://tanka.dev/
https://sdk.operatorframework.io/
https://book.kubebuilder.io/
https://metacontroller.github.io/metacontroller/
https://oam.dev/
https://ocm.software/
https://github.com/operator-framework/rukpak
https://artifacthub.io/
https://skaffold.dev/
https://www.crossplane.io/
https://kubevela.io/
https://github.com/kubemod/kubemod
https://monokle.io/
https://github.com/norwoodj/helm-docs
https://www.openapis.org/
https://openapi-generator.tech/
https://book.kubebuilder.io/reference/generating-crd
https://kusk.io/
https://github.com/deepmap/oapi-codegen


Outline

1. Configuration management research
2. Rendering pipeline research
3. Proposal



Configuration 
Management 

Research

● Standard components
● Vertical vs horizontal integration
● IaC vs CaC vs CaD
● Static analysis

○ Kubernetes API accuracy
● Feature comparison
● Conclusions

○ Barriers to adoption



Standard components for configuration management

● Authoring format - what an application developer maintains
○ e.g. Helm Chart, Timoni Module

● Extension system - libraries and components to extend functionality
○ e.g. TF/Pulumi/Crossplane providers, Helm library charts, kpt functions
○ Most extension systems include a Helm integration

■ Terraform, Pulumi, Crossplane, kpt, Kustomize, etc.
● Renderer - produces k8s manifests from the input

○ Usually built into a CLI
○ Some renderers provide an interface or SDK for use in other projects

■ e.g. the Helm SDK is used by helm-controller
● Deployment manager - manages installation and upgrades of k8s manifests

○ Most provide a CLI command for deployment that combines rendering and deployment
○ May generate merges/patches from rendered manifests (or rely on server-side apply)
○ May support pruning resources
○ Can enable GitOps

https://github.com/fluxcd/helm-controller
https://kubernetes.io/docs/reference/using-api/server-side-apply/


Vertical vs horizontal integration

Vertical integration

Monolithic stacks

● Baked-in assumptions about usage
● Incorporate many external sources in 

opinionated way
● Not viable as a distribution format
● e.g. Pulumi:

○ All of the standard components are part of 
the same ecosystem, purpose built for the 
Pulumi workflow

○ Render & Deploy: Pulumi CLI
○ GitOps Engine: Pulumi Operator

Horizontal integration

Interoperable components

● Separation of concerns
● UNIX philosophy
● Unopinionated about usage
● Allows incremental adoption

○ Easier onboarding
● Decreased ecosystem lock in
● e.g. Flux:

○ Flux’s GitOps engine is 
renderer-independent



Configuration-as-Code vs Infrastructure-as-Code

Configuration-as-Code (CaC)

● K8s resource configuration is abstracted
● Introduces authoring features:

○ Syntax: more efficient syntaxes than YAML
○ Composability: DRY configuration

● Can introduce consumer features:
○ Templating: reduced consumer interface

● e.g. Helm, cdk8s, Timoni

Infrastructure-as-Code (IaC)

● Superset of CaC: adds infrastructure 
management

○ Infrastructure = out-of-cluster resources
● Out-of-cluster resource configuration is 

abstracted:
○ Combined declarative interface for 

imperative resource management tasks
○ Efficient alternative to GUIs, shell scripts, 

or directly making API calls
● e.g. Pulumi, Terraform, Crossplane



Infrastructure management is out-of-scope for this project.
Configuration management is in-scope for this project.

IaC tools will be evaluated exclusively for their CaC features.



Configuration-as-Code vs Configuration-as-Data

Configuration-as-Code (CaC)

● K8s resource configuration is abstracted
● Introduces authoring features:

○ Syntax: more efficient syntaxes than YAML
○ Composability: DRY configuration

● Can introduce consumer features:
○ Templating: reduced consumer interface

● e.g. Helm, cdk8s, Timoni

Configuration-as-Data (CaD)

● K8s resource configuration is maintained 
as YAML

○ Full complexity is surfaced
○ Higher cognitive load for consumers

● Guaranteed transparency for ground truth 
manifests

● Provides tools for batch configuration 
maintenance and modification

● e.g. kpt, Kustomize, an insane person 
managing a directory of YAML with yq 
commands



Configuration explosion

Taking full advantage of Kubernetes’ declarative nature requires 
the maintenance of a massive amount of configuration.

Real-world example: ACE/Env line counts

Fully-rendered manifests

Pre-rendered Charts/manifests

35,176 lines
(49,433 including Grafana dashboards)

71,616 lines
(additional 165,837 lines of CRDs)



kubectl cluster-info dump for meerkat:

2.3 million lines of YAML

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#cluster-info


Static Analysis



What is static analysis?

Analyzing code before executing.

Static analysis is an example of the “shift-left” testing approach, because it allows 
validation earlier in the development process. Static analysis is also useful for 
comprehending existing code, which improves developer efficiency and learning 
speed.

Examples:

● IDEs perform static analysis of code using language servers
● IDEs perform static analysis of config files using declarative schemas
● The VS Code Kubernetes extension enables static analysis for YAML 

manifests with access to a cluster API server

https://langserver.org/
https://json-schema.org/
https://github.com/vscode-kubernetes-tools/vscode-kubernetes-tools


Static analysis for Kubernetes
The most documented and thus understood interface for the Kubernetes API is the native manifests in 
YAML. – Tony Gilkerson

● Kubernetes API is defined in a declarative format
○ Kubernetes-specific extended form of OpenAPI called “Structural Schema”

● Native types are defined as a best-effort replication of their handwritten validation rules
○ Ongoing improvements: KEP-2896, KEP-4153, wg-api-expression

● CRDs are comprehensively defined

However, Kubernetes does not provide a tool for client-side static analysis of YAML manifests. (there is 
ongoing work on a kubectl validate command)

Many Kubernetes tools fill this gap with their own client-side validator or by using a non-YAML interface for 
authoring manifests (such as a strongly-typed programming language).

Do static analysis tools for Kubernetes provide
1-to-1 accuracy with the Kubernetes API?
I researched each codebase to find out.

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/2896-openapi-v3
https://github.com/kubernetes/enhancements/tree/b103a6b0992439f996be4314caf3bf7b75652366/keps/sig-api-machinery/4153-declarative-validation
https://github.com/kubernetes/community/tree/master/wg-api-expression
https://github.com/kubernetes-sigs/kubectl-validate


Kubernetes API 1-to-1 accuracy?

NO Types are generated by cdk8s import k8s|crd, both lossy converters.

NO Native types are generated by pulumigen, a lossy converter.
CRD types are generated by crd2pulumi, a lossy converter.

NO CUE’s OpenAPI importer is lossy. Timoni extends its functionality in 
timoni mod vendor k8s|crd, which is still a lossy converter.

NO Validator schema is generated with openapi2jsonschema, which is a 
lossy converter.

NO Validation command monokle validate is an incomplete validator.
(working on incorporating CEL: branch)

NO CRD models are generated using kcl-openapi, a lossy converter.
(open issue for incorporating CEL: #22)

Links are to the offending file or repository. 

https://github.com/cdk8s-team/cdk8s-cli/blob/2.x/src/import/k8s.ts
https://github.com/pulumi/pulumi-kubernetes/blob/master/provider/cmd/pulumi-gen-kubernetes/main.go
https://github.com/pulumi/crd2pulumi
https://github.com/cue-lang/cue/issues?q=is%3Aissue+is%3Aopen+label%3A%22jsonschema+%2F+openapi%22
https://github.com/stefanprodan/timoni/blob/main/cmd/timoni/mod_vendor_k8s.go
https://github.com/yannh/openapi2jsonschema
https://github.com/kubeshop/monokle-core/blob/main/packages/validation/src/utils/customResourceDefinitions.ts
https://github.com/kubeshop/monokle-core/tree/add-cel-ts
https://github.com/kcl-lang/kcl-openapi
https://github.com/kcl-lang/kcl-openapi/issues/22


Spreadsheet link

Configuration manager feature comparison

https://docs.google.com/spreadsheets/d/1z5CYLbBxBQG6bXDPrCtQ04tINGiA0BFjSFXbxfp-uY8/edit?usp=sharing


Conclusions



There is no clear consensus from the 
endless stream of configuration 
management ideas.

Kubectl, Kustomize, and Helm remain the 
only widely-adopted tools.

I have shifted focus to understanding the 
barriers to the adoption of alternative 
tools.

It’s chaos out there.

Fun and/or terrifying reference: “Kubernetes application management tools” spreadsheet 

https://docs.google.com/spreadsheets/d/1FCgqz1Ci7_VCz_wdh8vBitZ3giBtac_H8SBw4uxnrsE/edit#gid=0


Barriers to adoption

● No idea can have an impact without wide adoption
○ Apps maintain a single deployment strategy for developer efficiency and deployment testing 

purposes
○ Developers do not want to add prerequisites and background knowledge for consumers 

deploying their apps
● Claim: lack of interoperability between configuration managers is the main 

obstacle for their adoption
○ Almost all alternatives include an integration with Helm, since it is the de-facto tool
○ Most alternatives’ catalogs are filled with wrappers for Helm Charts

Compare rendering pipelines to look
for a path to interoperability.



Rendering 
Pipelines

● Definition
● Render time comparison
● Rendering pipeline comparisons
● Desirable properties
● Conclusions



What is a rendering pipeline?
The process of generating ground truth Kubernetes 
manifests from an arbitrary input format.



Render time comparison



Rendering Pipeline Comparisons



Omitted for clarity: Helm reads cluster state while rendering

Generalized rendering pipeline of a Helm Chart



Generalized rendering pipeline for configuration manager CLIs



Rendering pipeline of an application’s custom CLI
e.g. deploying Istio with “istioctl” (which is implemented as a wrapper for the Istio Helm Chart)

https://istio.io/latest/docs/setup/install/istioctl


Rendering pipeline of a controller (or operator)



Desirable properties
The following software properties are valuable for designing renderers:

Deterministic
● The same input should always produce the same output
● e.g. a renderer that adds a timestamp to resources is not deterministic

Idempotent
● Repeat executions should not produce any change
● e.g. a renderer that increments the value of the replicas field by 1 is not idempotent

○ Instead, the replicas value should be provided as an input

Hermetic
● Renderers that require access to the host system cannot be executed declaratively and pose 

challenges for security, correctness, portability, and speed
● e.g. a renderer that reads cluster state requires read permissions to the cluster and cannot be 

reproduced without network access

Source: kpt Developing Functions guide

https://kpt.dev/book/05-developing-functions/?id=function-properties


Conclusions

● Rendering manifests is a part of every deployment process whether it is made 
visible to the user or not

● Competing ideas about how and when to render create confusion



Proposal
A standard renderer

● Need for a standard renderer
● Requirements
● Competing implementations
● Proposed solution
● Next steps



Simplify rendering to its fundamental process.

● Encapsulate various configuration management tools as extensions of a 
standard renderer framework

○ Extensions should be consistent, composable, and reusable
○ Aim to be deterministic, idempotent, and hermetic
○ Containerize extensions to minimize dependencies

● On-demand access to ground truth manifests
● Portable into any deployment process

○ Run locally, in CI, incorporate into controllers, etc.
○ Application consumer decides when and where an application is rendered

Need for a standard renderer



Developer requirements

● Reduce complexity when possible with 
reusability and composability

● Enable adoption of alternative tools
● Shift-left: testing and validation earlier in 

the development process
● Manageable dependencies

○ Able to tweak output from an upstream 
dependency

○ Easily identify breaking changes from 
updated interface and resulting manifests

○ Easily update to incorporate improvements 
and patched vulnerabilities

● Full control of ground truth manifests
○ Small changes to the Kubernetes 

manifests should be easy in all cases

Requirements

Consumer requirements

● Do not introduce dependencies to 
deployment process

● Push complexity down – away from the 
consumer

● Control over when manifests are rendered
○ e.g. locally by the consumer or in-cluster 

by a controller
○ Enable transitions between the options

● Control over how manifests are deployed
○ Single deployment and continuous 

deployment should be equally full-featured



Competing implementations
There are various implementations of standardized app description models and rendering pipeline models:

● OAM: Open Application Model
○ Adopted by KubeVela, started as part of Crossplane

● OCM: Open Component Model
○ Described as a “Software Bill of Delivery (SBOD)”
○ Intentional about OCI compatibility and portability of defined components

● RukPak: Bundles
○ Framework for packaging, distribution, and deployment of apps
○ Defines the concept of a “Provisioner” that renders a “Bundle”

● CNAB: Cloud Native Application Bundles
○ Adopted by Porter

● kpt & Kustomize: KRM Functions
○ aka: kpt functions, Kustomize plugins
○ Containerized idempotent transformation functions

● Crossplane: Composition Functions
○ Crossplane’s offshoot of the KRM Function specification

● KubeMod: ModRule
○ KubeMod is a controller that manages declarative mutating admission webhooks
○ ModRule CRD defines a simple modification for resources

● Skaffold: skaffold render
○ A standard renderer that supports raw YAML, kpt, Kustomize, and Helm
○ External tools must be installed on the system

● Kapitan generators
○ Rendering function framework

https://oam.dev
https://kubevela.io/
https://ocm.software
https://github.com/operator-framework/rukpak
https://cnab.io/
https://porter.sh/
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md
https://docs.crossplane.io/v1.14/concepts/composition-functions/
https://github.com/kubemod/kubemod
https://skaffold.dev/docs/renderers
https://kapitan.dev/pages/blog/2023-08-27/#objective-of-this-tutorial




Proposed Solution
What if I told you there was an existing standard already built into kubectl?



Proposed solution: KRM Functions

There is an existing standard built into to kubectl: KRM Functions

● KRM Functions
○ Specification was created by the kpt project and donated to the CNCF
○ Defines inter-process communication between an orchestrator (e.g. kpt CLI) and functions
○ Can be developed in different toolchains and languages (with containerization)
○ Interoperable and backwards compatible

● Kustomize plugin system
○ Kustomize is adopting KRM Functions for its plugin system
○ The KRM Function-based plugin system is still in alpha

● Currently available in kubectl, Kustomize, and kpt
○ Kustomize has been built into kubectl since 2019

https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md


What are KRM Functions?

KRM Functions are container images with a well-defined input and output format.

● kpt’s KRM Function catalog has examples: catalog.kpt.dev
● kpt includes an experimental WASM runtime: kpt PR #3450

○ Still in alpha and not part of the core specification yet (Kustomize issue: #4956)

Imperative execution: manually run a function once

● kustomize fn run
● kpt fn eval

Declarative execution: run functions as part of a defined pipeline

● kubectl kustomize --enable-alpha-plugins
● kustomize build --enable-alpha-plugins
● kpt fn render

https://catalog.kpt.dev/
https://github.com/kptdev/kpt/pull/3450
https://github.com/kubernetes-sigs/kustomize/issues/4956
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/commands/run-fns.md
https://kpt.dev/reference/cli/fn/eval/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#kustomize
https://kubectl.docs.kubernetes.io/references/kustomize/cmd/build/
https://kpt.dev/reference/cli/fn/render/


Architecture



State of the KRM Function specification

Functions have been stable in kpt for a while, but Kustomize’s plugin system is still 
in development, with many unimplemented proposals and open issues:

● KEP-2299 Kustomize Plugin Composition API
● kpt #3118 Accept non-YAML files
● KEP-2906 Kustomize Function Catalog
● KEP-2299 Public KRM Functions Registry
● KEP-2953 Kustomize plugin graduation

https://github.com/kubernetes/enhancements/tree/master/keps/sig-cli/2299-kustomize-plugin-composition
https://github.com/kptdev/kpt/issues/3118
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cli/2906-kustomize-function-catalog
https://github.com/kubernetes/enhancements/tree/master/keps/sig-cli/2299-kustomize-plugin-composition
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cli/2953-kustomize-plugin-graduation


Next steps

Work will continue next semester as CPS 596.

● Currently researching KRM Functions, function SDKs, and similar projects
○ KRM Function SDKs: Kustomize fn/framework, kpt fn

● Create standard renderer POC that accomplishes the following:
○ Supports various configuration renderers through containerized functions
○ Defines rendering pipelines as compositions of functions
○ Standard renderer itself packaged as a containerized function
○ Runs locally with a CLI and runs in-cluster with a controller

Goal: POC renders with kubectl (using built-in Kustomize)

https://pkg.go.dev/sigs.k8s.io/kustomize/kyaml/fn/framework
https://pkg.go.dev/github.com/GoogleContainerTools/kpt-functions-sdk/go/fn


Deliverables
1. Proposal presentation ✅
2. Progress presentation ✅
3. Final design presentation ✅


