Final Presentation
Justen Stall

Associate Data Science Engineer, UDRI
Master of Computer Science Student, UD

Background

Problem Plan
Solving the complexity problems of large-scale 1. Describe the problem
Kubernetes systems. 2. Evaluate existing solutions

_ 3. Prescribe and implement a solution
Approach the complexity problem as a

greenfield and use it as an opportunity to learn
Kubernetes system design.

A beautiful green field.

Progress

Attended Kubecon
e Created proof of concept Timoni bundle for ACE/Env

Created configuration rendering pipeline comparisons
o Looked at processes for GitLab deployment: Helm Chart, Operator, Big Bang Helm Chart

Researched declarative API design and its adoption across Kubernetes tools
e |dentified standard components for configuration management
Projects:

o Configuration-as-Code: Terraform, Pulumi, cdk8s, KubeVela, kluctl
Configuration-as-Data: kpt, Kustomize, KRM Functions

DSLs: KCL, CUE, CEL, Jsonnet, Tanka

Controller SDKs: Operator SDK, Kubebuilder, metacontroller

K8s packaging models: OAM, OCM, RukPak, ArtifactHub, Skaffold

K8s-related tools: Crossplane, KubeVela, KubeMod, Monokle, helm-docs

API development: OpenAPl, OpenAPI Generator, controller-gen, Kusk, oapi-codegen

o O O O O O

https://www.terraform.io/
https://www.pulumi.com/
https://cdk8s.io/
https://kubevela.io/
https://kluctl.io/
https://kpt.dev/
https://kustomize.io/
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md
https://kcl-lang.io/
https://cuelang.org/
https://github.com/google/cel-spec
https://jsonnet.org/
https://tanka.dev/
https://sdk.operatorframework.io/
https://book.kubebuilder.io/
https://metacontroller.github.io/metacontroller/
https://oam.dev/
https://ocm.software/
https://github.com/operator-framework/rukpak
https://artifacthub.io/
https://skaffold.dev/
https://www.crossplane.io/
https://kubevela.io/
https://github.com/kubemod/kubemod
https://monokle.io/
https://github.com/norwoodj/helm-docs
https://www.openapis.org/
https://openapi-generator.tech/
https://book.kubebuilder.io/reference/generating-crd
https://kusk.io/
https://github.com/deepmap/oapi-codegen

Outline

1. Configuration management research
2. Rendering pipeline research
3. Proposal

Configuration
Management
Research

Standard components

Vertical vs horizontal integration
laC vs CaC vs CaD

Static analysis

o Kubernetes APl accuracy
Feature comparison

Conclusions
o Barriers to adoption

Standard components for configuration management

Authoring format - what an application developer maintains
o e.g. Helm Chart, Timoni Module

Extension system - libraries and components to extend functionality
o e.g. TF/Pulumi/Crossplane providers, Helm library charts, kpt functions
o Most extension systems include a Helm integration
m Terraform, Pulumi, Crossplane, kpt, Kustomize, etc.

Renderer - produces k8s manifests from the input
o Usually built into a CLI
o Some renderers provide an interface or SDK for use in other projects
m e.g.the Helm SDK is used by helm-controller

Deployment manager - manages installation and upgrades of k8s manifests
o Most provide a CLI command for deployment that combines rendering and deployment
o May generate merges/patches from rendered manifests (or rely on server-side apply)
o May support pruning resources
o Can enable GitOps

https://github.com/fluxcd/helm-controller
https://kubernetes.io/docs/reference/using-api/server-side-apply/

Vertical vs horizontal integration

Vertical integration Horizontal integration
Monolithic stacks Interoperable components
e Baked-in assumptions about usage e Separation of concerns
e Incorporate many external sources in e UNIX philosophy
opinionated way e Unopinionated about usage
e Not viable as a distribution format e Allows incremental adoption
e.g. Pulumi: o Easier onboarding
o All of the standard components are part of e Decreased ecosystem lock in
the same ecosystem, purpose built for the e e.g.Flux:
Pulumi workflow o Flux’s GitOps engine is
o Render & Deploy: Pulumi CLI renderer-independent

o GitOps Engine: Pulumi Operator

Configuration-as-Code vs Infrastructure-as-Code

Configuration-as-Code (CaC)

K8s resource configuration is abstracted
Introduces authoring features:

o Syntax: more efficient syntaxes than YAML

o Composability: DRY configuration
Can introduce consumer features:

o Templating: reduced consumer interface
e.g. Helm, cdk8s, Timoni

kubernetes

Infrastructure-as-Code (laC)

Superset of CaC: adds infrastructure
management
o Infrastructure = out-of-cluster resources
Out-of-cluster resource configuration is
abstracted:
o Combined declarative interface for
imperative resource management tasks
o Efficient alternative to GUIs, shell scripts,
or directly making API calls

e.g. Pulumi, Terraform, Crossplane

o 2. A
S—" Google Cloud

-

_

Infrastructure management is out-of-scope for this project.
Configuration management is in-scope for this project.

laC tools will be evaluated exclusively for their CaC features.

Configuration-as-Code vs Configuration-as-Data

Configuration-as-Code (CaC)

K8s resource configuration is abstracted

Introduces authoring features:
o Syntax: more efficient syntaxes than YAML
o Composability: DRY configuration

Can introduce consumer features:
o Templating: reduced consumer interface
e.g. Helm, cdk8s, Timoni

-GO -

Configuration-as-Data (CaD)

K8s resource configuration is maintained

as YAML

o Full complexity is surfaced
o Higher cognitive load for consumers

Guaranteed transparency for ground truth
manifests

Provides tools for batch configuration
maintenance and modification

e.g. kpt, Kustomize, an insane person
managing a directory of YAML with yq
commands

w YA
J o

Configuration explosion

Taking full advantage of Kubernetes’ declarative nature requires
the maintenance of a massive amount of configuration.

Real-world example: ACE/Env line counts

Fully-rendered manifests

35,176 lines

(49,433 including Grafana dashboards)

Pre-rendered Charts/manifests

71,616 lines

(additional 165,837 lines of CRDs)

So &Noc N%‘LQ\L; WQ’ ke TR o

%d"&v\ U’) 028 Q//3

)
SEY .

@

\

6G

4

_

kubectl cluster-info dump for meerkat:

2.3 million lines of YAML

J

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#cluster-info

Static Analysis

What is static analysis?

Analyzing code before executing.

Static analysis is an example of the “shift-left” testing approach, because it allows
validation earlier in the development process. Static analysis is also useful for
comprehending existing code, which improves developer efficiency and learning
speed.

Examples:

IDEs perform static analysis of code using language servers

e |DEs perform static analysis of config files using declarative schemas
The VS Code Kubernetes extension enables static analysis for YAML
manifests with access to a cluster API server

https://langserver.org/
https://json-schema.org/
https://github.com/vscode-kubernetes-tools/vscode-kubernetes-tools

Static analysis for Kubernetes

The most documented and thus understood interface for the Kubernetes APl is the native manifests in
YAML. — Tony Gilkerson

e Kubernetes APl is defined in a declarative format
o Kubernetes-specific extended form of OpenAPI called “Structural Schema”

e Native types are defined as a best-effort replication of their handwritten validation rules
o Ongoing improvements: KEP-2896, KEP-4153, wg-api-expression
e CRDs are comprehensively defined

However, Kubernetes does not provide a tool for client-side static analysis of YAML manifests. (there is
ongoing work on a kubectl validate command)

Many Kubernetes tools fill this gap with their own client-side validator or by using a non-YAML interface for
authoring manifests (such as a strongly-typed programming language).

Do static analysis tools for Kubernetes provide
1-to-1 accuracy with the Kubernetes API?
| researched each codebase to find out.

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/2896-openapi-v3
https://github.com/kubernetes/enhancements/tree/b103a6b0992439f996be4314caf3bf7b75652366/keps/sig-api-machinery/4153-declarative-validation
https://github.com/kubernetes/community/tree/master/wg-api-expression
https://github.com/kubernetes-sigs/kubectl-validate

Kubernetes API 1-to-1 accuracy?

. cdkS8s NO Types are generated by cdk8s import k8s|crd, both lossy converters.
. Native types are generated by pulumigen, a lossy converter.
YU
R Pulumi NO CRD types are generated by crd2pulumi, a lossy converter.
{t. } NO CUE’s OpenAPl importer is lossy. Timoni extends its functionality in
imoni timoni mod vendor k8s|crd, which is still a lossy converter.
NO Validator schema is generated with openapi?2jsonschema, which is a
: ossy converter.
I rt
Q MONOKLE NO Validation command monokle validate is an incomplete validator.
brerr (working on incorporating CEL: branch)
CRD models are generated using kcl-openapi, a lossy converter.
e kcl NO |) . |
(open issue for incorporating CEL: #22)

Links are to the offending file or repository.

https://github.com/cdk8s-team/cdk8s-cli/blob/2.x/src/import/k8s.ts
https://github.com/pulumi/pulumi-kubernetes/blob/master/provider/cmd/pulumi-gen-kubernetes/main.go
https://github.com/pulumi/crd2pulumi
https://github.com/cue-lang/cue/issues?q=is%3Aissue+is%3Aopen+label%3A%22jsonschema+%2F+openapi%22
https://github.com/stefanprodan/timoni/blob/main/cmd/timoni/mod_vendor_k8s.go
https://github.com/yannh/openapi2jsonschema
https://github.com/kubeshop/monokle-core/blob/main/packages/validation/src/utils/customResourceDefinitions.ts
https://github.com/kubeshop/monokle-core/tree/add-cel-ts
https://github.com/kcl-lang/kcl-openapi
https://github.com/kcl-lang/kcl-openapi/issues/22

Configuration manager feature comparison

Component

Authoring

Language

Language server?

Can include cluster state?
Valid YAML encoding?
Validate of K8s schemas?
Validate CRD schemas?
Declarative validation support?
Integrate other package formats?
Extensions

Extension system?

Central extension catalog?
Distribution

Defined packaging format?
OCI compatible?

Renderer

Client-side

Renderer SDK

Render without cluster?
Available as a KRM Function?
Deployment

Built-in deployment command?
First-party GitOps engine?
Flux-compatible controller?
Merge/patch logic?

Native k8s merge/patch logic?
Resource pruning?

Supports server-side apply?
Defaults to server-side apply?

Kubect!

YAML/JSON
Yes

No

Yes

No

No

No

Yes
Plugins
Yes
Yes

N/A
N/A

N/A
N/A
N/A
N/A

Kustomize
Kustomizations
YAML

Yes

No

Yes

No

No

No

Yes

KRM Functions
Yes

No

No
No

Yes
Yes
Partial
No

Partial
No
Yes
N/A
N/A
N/A
N/A
N/A

Helm
Chart

Go templates
Yes

Yes

No

No

No

No

No
Sub-charts
Yes

Partial

Yes
Yes

Yes
Yes
Partial
Partial

Yes
No
Yes
Yes
No
Yes
No
No

KPT

KPT packages
YAML

Yes

No

Yes

No

No

No

Yes

KRM functions
Yes

Yes

Yes
No

Yes
Yes
Partial
No

Yes
Yes
No

Yes
Yes
Yes
Yes
No

CUE
Module
CUE
No

No

Yes
Yes
Partial
No

No
Modules
Yes

No

Yes
Yes

Yes
Partial

Yes
N/A
N/A
N/A
N/A
N/A

Timoni
Module
CUE
No

Yes
Yes
Yes
Partial
No

No
Modules
Yes

No

Yes
Yes

Yes
No
Yes
No

Yes
No

No

Yes
Yes
Yes
Yes
Yes

KCL
Module
KCL
Yes

No

Yes
Yes
Partial
No
Partial
Modules
Yes

Yes
Yes

Yes
Yes
Yes
Yes

No
No
No
N/A
N/A
N/A
N/A
N/A

cdk8s
app
Many
Yes
No
Yes
Yes
Yes
No
Yes
Constructs
Yes
Yes

Yes
No

Spreadsheet link

Terraform
Module
HCL

Yes

Yes

Yes

Yes

No

No

Yes
Providers

Yes
Yes
Partial
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Pulumi
Program
Many
Yes

Yes

Yes

Yes

Yes

No

Yes
Providers
Yes

Yes

Yes
Yes

Yes
Yes
Partial
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Crossplane

Jsonnet

Custom resourct Project

Many
No
Yes
Yes
No
No
No
Yes
Packages
Yes
Yes

Yes
Yes

No
Yes
No
No

Yes

Yes
Yes
Yes
Yes
Yes
Yes

Jsonnet
Yes

No

Yes
Partial
Partial
No

No

No

Yes
No

Yes
Yes
Yes
No

No

No

Yes
N/A
N/A
N/A
N/A
N/A

Tanka
Project
Jsonnet
Yes

No

Yes
Partial
Partial

kluctl
project
Jinja
Yes
No

No

No

No

Yes
Yes
Yes
No

Yes
Yes
No

Yes
Yes
Yes
Yes
Yes

https://docs.google.com/spreadsheets/d/1z5CYLbBxBQG6bXDPrCtQ04tINGiA0BFjSFXbxfp-uY8/edit?usp=sharing

Conclusions

It's chaos out there.

There is no clear consensus from the
endless stream of configuration
management ideas.

Kubectl, Kustomize, and Helm remain the
only widely-adopted tools.

| have shifted focus to understanding the
barriers to the adoption of alternative
tools.

Fun and/or terrifying reference: “Kubernetes application management tools” spreadsheet

https://docs.google.com/spreadsheets/d/1FCgqz1Ci7_VCz_wdh8vBitZ3giBtac_H8SBw4uxnrsE/edit#gid=0

Barriers to adoption

e No idea can have an impact without wide adoption
o Apps maintain a single deployment strategy for developer efficiency and deployment testing
purposes
o Developers do not want to add prerequisites and background knowledge for consumers
deploying their apps
e Claim: lack of interoperability between configuration managers is the main

obstacle for their adoption

o Almost all alternatives include an integration with Helm, since it is the de-facto tool
o Most alternatives’ catalogs are filled with wrappers for Helm Charts

Compare rendering pipelines to look
for a path to interoperability.

Definition

Render time comparison
Rendering pipeline comparisons
Desirable properties
Conclusions

Rendering
Pipelines

What is a rendering pipeline?

The process of generating ground truth Kubernetes
manifests from an arbitrary input format.

Render time comparison

< ©

CARVEL

ytt config - Operator @
HELM »

A

- % O Mutating Admission
s Helm Chart J o flux Webhook
4 ® -
cdk8s app kpt package GitOps deployment
< | | |
renders locally | cluster access required | renders in-cluster | during cluster admission

3 Lo M#

Rendering Pipeline Comparisons

Helm CLI

helm install

Helm Chart —is input for

\
—sends to K8s API server
4 >
Values file —is input for 5
K8s manifests

Generalized rendering pipeline of a Helm Chart

Omitted for clarity: Helm reads cluster state while rendering

Helm Chart —————p @G NN

Kustomization ——9 @]1r-X N

Tool-specific

K8s API server
deployment manager

kpt package ——» @LGANEA! K8s manifests

Timoni module ——> @kl iNeN

cdk8s app ——» @[CIER

Generalized rendering pipeline for configuration manager CLlIs

Application CLI

Built-in logic

—sends to K8s API server

User =——runs bootstrap command—p

K8s manifests

Rendering pipeline of an application’s custom CLI

e.g. deploying Istio with “istioctl” (which is implemented as a wrapper for the Istio Helm Chart)

https://istio.io/latest/docs/setup/install/istioctl

Custom Resource

User

Controller

K8s APl server

- sends to
Built-in logic K8s manifests _
reads custom resource

and cluster state

Rendering pipeline of a controller (or operator)

Desirable properties

The following software properties are valuable for designing renderers:

Deterministic

e The same input should always produce the same output
e e.g. arenderer that adds a timestamp to resources is not deterministic

Idempotent

e Repeat executions should not produce any change

e e.g. arenderer that increments the value of the replicas field by 1 is not idempotent
o Instead, the replicas value should be provided as an input

Hermetic

e Renderers that require access to the host system cannot be executed declaratively and pose
challenges for security, correctness, portability, and speed

e e.g. arenderer that reads cluster state requires read permissions to the cluster and cannot be
reproduced without network access

Source: kpt Developing Functions guide

https://kpt.dev/book/05-developing-functions/?id=function-properties

Conclusions

e Rendering manifests is a part of every deployment process whether it is made
visible to the user or not
e Competing ideas about how and when to render create confusion

YOU SAIDALLI
NEEDEDWASAYAMLFILE ;-

/‘*'
P

Need for a standard renderer
Requirements

Competing implementations
Proposed solution

Next steps

Proposal

A standard renderer

Need for a standard renderer

Simplify rendering to its fundamental process.

e Encapsulate various configuration management tools as extensions of a

standard renderer framework
o Extensions should be consistent, composable, and reusable
o Aim to be deterministic, idempotent, and hermetic
o Containerize extensions to minimize dependencies

e On-demand access to ground truth manifests

e Portable into any deployment process
o Run locally, in Cl, incorporate into controllers, etc.
o Application consumer decides when and where an application is rendered

Anything!

—is input for— @ELEIL NS ([S¢-Ig —produces K8s manifests

Requirements

Developer requirements

Reduce complexity when possible with
reusability and composability
Enable adoption of alternative tools
Shift-left: testing and validation earlier in
the development process
Manageable dependencies
o Able to tweak output from an upstream
dependency
o Easily identify breaking changes from
updated interface and resulting manifests
o Easily update to incorporate improvements
and patched vulnerabilities
Full control of ground truth manifests
o Small changes to the Kubernetes
manifests should be easy in all cases

Consumer requirements

Do not introduce dependencies to

deployment process

Push complexity down — away from the

consumer

Control over when manifests are rendered
o e.g.locally by the consumer or in-cluster

by a controller
o Enable transitions between the options
Control over how manifests are deployed
o Single deployment and continuous
deployment should be equally full-featured

Competing implementations

There are various implementations of standardized app description models and rendering pipeline models:

OAM: Open Application Model
o Adopted by KubeVela, started as part of Crossplane
OCM: Open Component Model
o Described as a “Software Bill of Delivery (SBOD)”
o Intentional about OCI compatibility and portability of defined components
RukPak: Bundles
o Framework for packaging, distribution, and deployment of apps
o Defines the concept of a “Provisioner” that renders a “Bundle”
CNAB: Cloud Native Application Bundles
o Adopted by Porter
kpt & Kustomize: KRM Functions
o aka: kpt functions, Kustomize plugins
o Containerized idempotent transformation functions
Crossplane: Composition Functions
o Crossplane’s offshoot of the KRM Function specification
KubeMod: ModRule
o KubeMod is a controller that manages declarative mutating admission webhooks
o ModRule CRD defines a simple modification for resources
Skaffold: skaffold render
o A standard renderer that supports raw YAML, kpt, Kustomize, and Helm
o External tools must be installed on the system

Kapitan generators

o Rendering function framework

,.@
I.

A

¢

’0

e
B &

=

https://oam.dev
https://kubevela.io/
https://ocm.software
https://github.com/operator-framework/rukpak
https://cnab.io/
https://porter.sh/
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md
https://docs.crossplane.io/v1.14/concepts/composition-functions/
https://github.com/kubemod/kubemod
https://skaffold.dev/docs/renderers
https://kapitan.dev/pages/blog/2023-08-27/#objective-of-this-tutorial

HOW STANDARDS PROLFERATE:

(sEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

I1?! RipIcVLoLs!

WE NEED To DEVELOP

ONE UNNVERSAL STANDARD

THAT COVERS EVERYONES
USE CASES. v

SOON:

SITUATION:

THERE ARE
|5 COMPETING
STANDARDS.

Proposed Solution

What if | told you there was an existing standard already built into kubect!?

Proposed solution: KRM Functions

There is an existing standard built into to kubectl: KRM Functions

e KRM Functions

o Specification was created by the kpt project and donated to the CNCF

o Defines inter-process communication between an orchestrator (e.g. kpt CLI) and functions
o Can be developed in different toolchains and languages (with containerization)

o Interoperable and backwards compatible

e Kustomize plugin system

o Kustomize is adopting KRM Functions for its plugin system
o The KRM Function-based plugin system is still in alpha

e Currently available in kubectl, Kustomize, and kpt
o Kustomize has been built into kubectl since 2019

input items functionConfig

output items results

https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/api-conventions/functions-spec.md

What are KRM Functions?

KRM Functions are container images with a well-defined input and output format.

e Kkpt's KRM Function catalog has examples: catalog.kpt.dev
e Kkpt includes an experimental WASM runtime: kpt PR #3450

o Still in alpha and not part of the core specification yet (Kustomize issue: #4956)

Imperative execution: manually run a function once

e kustomize fn run
e kpt fn eval

Declarative execution: run functions as part of a defined pipeline

e kubectl kustomize --enable-alpha-plugins
e kustomize build --enable-alpha-plugins
e kpt fn render

https://catalog.kpt.dev/
https://github.com/kptdev/kpt/pull/3450
https://github.com/kubernetes-sigs/kustomize/issues/4956
https://github.com/kubernetes-sigs/kustomize/blob/master/cmd/config/docs/commands/run-fns.md
https://kpt.dev/reference/cli/fn/eval/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#kustomize
https://kubectl.docs.kubernetes.io/references/kustomize/cmd/build/
https://kpt.dev/reference/cli/fn/render/

Architecture

[]m|
ooo

Function

container registry j

Y
og
function container
pulls each e.g. cdk8s
function container

runs functions

Add CRDs

Rendering
Pipeline Definition
(YAML)

Kubernetes
manifests

Standard Renderer

State of the KRM Function specification

Functions have been stable in kpt for a while, but Kustomize’s plugin system is still
in development, with many unimplemented proposals and open issues:

KEP-2299 Kustomize Plugin Composition API
kpt #3118 Accept non-YAML files

KEP-2906 Kustomize Function Catalog
KEP-2299 Public KRM Functions Registry
KEP-2953 Kustomize plugin graduation

https://github.com/kubernetes/enhancements/tree/master/keps/sig-cli/2299-kustomize-plugin-composition
https://github.com/kptdev/kpt/issues/3118
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cli/2906-kustomize-function-catalog
https://github.com/kubernetes/enhancements/tree/master/keps/sig-cli/2299-kustomize-plugin-composition
https://github.com/kubernetes/enhancements/blob/master/keps/sig-cli/2953-kustomize-plugin-graduation

Next steps

Work will continue next semester as CPS 596.

e Currently researching KRM Functions, function SDKs, and similar projects
o KRM Function SDKs: Kustomize fn/framework, kpt fn

e Create standard renderer POC that accomplishes the following:
o Supports various configuration renderers through containerized functions
o Defines rendering pipelines as compositions of functions
o Standard renderer itself packaged as a containerized function
o Runs locally with a CLI and runs in-cluster with a controller

Goal: POC renders with kubect1l (using built-in Kustomize)

https://pkg.go.dev/sigs.k8s.io/kustomize/kyaml/fn/framework
https://pkg.go.dev/github.com/GoogleContainerTools/kpt-functions-sdk/go/fn

Deliverables
1. Proposal presentation
2. Progress presentation
3. Final design presentation

